Small-sample adjustments in using the sandwich variance estimator in generalized estimating equations.
نویسندگان
چکیده
The generalized estimating equation (GEE) approach is widely used in regression analyses with correlated response data. Under mild conditions, the resulting regression coefficient estimator is consistent and asymptotically normal with its variance being consistently estimated by the so-called sandwich estimator. Statistical inference is thus accomplished by using the asymptotic Wald chi-squared test. However, it has been noted in the literature that for small samples the sandwich estimator may not perform well and may lead to much inflated type I errors for the Wald chi-squared test. Here we propose using an approximate t- or F-test that takes account of the variability of the sandwich estimator. The level of type I error of the proposed t- or F-test is guaranteed to be no larger than that of the Wald chi-squared test. The satisfactory performance of the proposed new tests is confirmed in a simulation study. Our proposal also has some advantages when compared with other new approaches based on direct modifications of the sandwich estimator, including the one that corrects the downward bias of the sandwich estimator. In addition to hypothesis testing, our result has a clear implication on constructing Wald-type confidence intervals or regions.
منابع مشابه
Modification of the Sandwich Estimator in Generalized Estimating Equations with Correlated Binary Outcomes in Rare Event and Small Sample Settings.
Regression models for correlated binary outcomes are commonly fit using a Generalized Estimating Equations (GEE) methodology. GEE uses the Liang and Zeger sandwich estimator to produce unbiased standard error estimators for regression coefficients in large sample settings even when the covariance structure is misspecified. The sandwich estimator performs optimally in balanced designs when the n...
متن کاملSmall-sample adjustments for Wald-type tests using sandwich estimators.
The sandwich estimator of variance may be used to create robust Wald-type tests from estimating equations that are sums of K independent or approximately independent terms. For example, for repeated measures data on K individuals, each term relates to a different individual. These tests applied to a parameter may have greater than nominal size if K is small, or more generally if the parameter t...
متن کاملRobust covariance estimator for small-sample adjustment in the generalized estimating equations: A simulation study
The robust or sandwich estimator is common to estimate the covariance matrix of the estimated regression parameter for generalized estimating equation (GEE) method to analyze longitudinal data. However, the robust estimator would underestimate the variance under a small sample size. We propose an alternative covariance estimator to the robust estimator to improve the small-sample bias in the GE...
متن کاملSample size and power calculations with correlated binary data.
Correlated binary data are common in biomedical studies. Such data can be analyzed using Liang and Zeger's generalized estimating equations (GEE) approach. An attractive point of the GEE approach is that one can use a misspecified working correlation matrix, such as the working independence model (i.e., the identity matrix), and draw (asymptotically) valid statistical inference by using the so-...
متن کاملThe Sandwich Variance Estimator: EÆciency Properties and Coverage Probability of Con dence Intervals
The sandwich estimator, often known as the robust covariance matrix estimator or the empirical covariance matrix estimator, has achieved increasing use with the growing popularity of generalized estimating equations. Its virtue is that it provides consistent estimates of the covariance matrix for parameter estimates even when the tted parametric model fails to hold, or is not even speci ed. Sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2002